python之Pandas 计算时间序列中的零点
lexus
阅读:36
2024-11-24 20:56:43
评论:0
我有一个每日时间序列 [1980 年至今],我需要在其中检查每个每日时间步长是否为零并系统地删除记录。我最终想对该解决方案进行矢量化处理,这样我就可以在继续分析之前预处理这些操作。如果我有数据框 df
:
date name elev_exact swe
0 1990-10-30 COTTONWOOD_CREEK 2337.816 0.01524
1 1990-10-30 EMIGRANT_SUMMIT 2252.472 0.00000
2 1990-10-30 PHILLIPS_BENCH 2499.360 0.05334
3 1990-10-30 PINE_CREEK_PASS 2048.256 0.00000
4 1990-10-30 SALT_RIVER_SUMMIT 2328.672 0.00000
5 1990-10-30 SEDGWICK_PEAK 2392.680 0.00000
6 1990-10-30 SHEEP_MTN 2026.920 0.00000
7 1990-10-30 SLUG_CREEK_DIVIDE 2202.180 0.00000
8 1990-10-30 SOMSEN_RANCH 2072.640 0.00000
9 1990-10-30 WILDHORSE_DIVIDE 1978.152 0.00000
10 1990-10-30 WILLOW_CREEK 2462.784 0.01778
11 1991-03-15 COTTONWOOD_CREEK 2337.816 0.41910
12 1991-03-15 EMIGRANT_SUMMIT 2252.472 0.42418
13 1991-03-15 PHILLIPS_BENCH 2499.360 0.52832
14 1991-03-15 PINE_CREEK_PASS 2048.256 0.32258
15 1991-03-15 SALT_RIVER_SUMMIT 2328.672 0.23876
16 1991-03-15 SEDGWICK_PEAK 2392.680 0.39878
17 1991-03-15 SHEEP_MTN 2026.920 0.31242
18 1991-03-15 SLUG_CREEK_DIVIDE 2202.180 0.29464
19 1991-03-15 SOMSEN_RANCH 2072.640 0.29972
20 1991-03-15 WILDHORSE_DIVIDE 1978.152 0.35052
21 1991-03-15 WILLOW_CREEK 2462.784 0.60706
22 1991-10-25 COTTONWOOD_CREEK 2337.816 0.01270
23 1991-10-25 EMIGRANT_SUMMIT 2252.472 0.01016
24 1991-10-25 PHILLIPS_BENCH 2499.360 0.02286
25 1991-10-25 PINE_CREEK_PASS 2048.256 0.00508
26 1991-10-25 SALT_RIVER_SUMMIT 2328.672 0.01016
27 1991-10-25 SEDGWICK_PEAK 2392.680 0.00254
28 1991-10-25 SHEEP_MTN 2026.920 0.00000
29 1991-10-25 SLUG_CREEK_DIVIDE 2202.180 0.00762
30 1991-10-25 SOMSEN_RANCH 2072.640 0.00000
31 1991-10-25 WILDHORSE_DIVIDE 1978.152 0.00508
32 1991-10-25 WILLOW_CREEK 2462.784 0.02032
问题是我想找到超过一个零 swe
测量值的日子,并且只保留具有最大 elev_exact
的观测值。然后我需要将所需的零记录合并回 df
。
这是一个 groupby 循环,可以实现我想要的:
result = pd.DataFrame()
for name, group in df.groupby('date'):
non_zero = group.where(group.swe >0).dropna()
if not group.equals(non_zero):
zeros = group.where(group.swe == 0).dropna()
zero_kept = zeros.loc[zeros.elev_exact.idxmax()]
out = non_zero.append(zero_kept)
out = out[out.elev_exact >= zero_kept.elev_exact]
result = pd.concat([result, out])
else:
result = pd.concat([result, non_zero])
我不介意使用 groupby
但我想更有条理地使用它,所以我没有内部 if-else
循环。
我是这样想的
- 对于每个每日时间步长,我想找到哪里有多个零测量值
zero_count = df.groupby('date').apply(lambda x: np.count_nonzero(x==0))
zero_count = zero_count.where(zero_count >1).dropna()
- 用
zero_count > 1
分隔日期
zero_fix = zero_count.where(zero_count >1).dropna()
- 找出具有多个零的每一天的最大海拔
fixes = df[df.date.isin(zero_fix.index)].dropna()
fixes = fixes.loc[fixes[fixes.swe==0].groupby('date')['elev_exact'].idxmax().to_list()]
- 将找到的海拔阈值应用回
df
。
df.loc[:,'threshold'] = df.date.map(lu_dict)
df = df.replace(np.nan, 0)
df = df[df.elev_exact >= df.threshold].drop('threshold', axis=1)
这也有效,但步骤 1 中的 lambda 函数非常慢。还有另一种计算零的方法吗?
预期输出:
date name elev_exact swe
2 1990-10-30 PHILLIPS_BENCH 2499.360 0.05334
5 1990-10-30 SEDGWICK_PEAK 2392.680 0.00000
10 1990-10-30 WILLOW_CREEK 2462.784 0.01778
11 1991-03-15 COTTONWOOD_CREEK 2337.816 0.41910
12 1991-03-15 EMIGRANT_SUMMIT 2252.472 0.42418
13 1991-03-15 PHILLIPS_BENCH 2499.360 0.52832
14 1991-03-15 PINE_CREEK_PASS 2048.256 0.32258
15 1991-03-15 SALT_RIVER_SUMMIT 2328.672 0.23876
16 1991-03-15 SEDGWICK_PEAK 2392.680 0.39878
17 1991-03-15 SHEEP_MTN 2026.920 0.31242
18 1991-03-15 SLUG_CREEK_DIVIDE 2202.180 0.29464
19 1991-03-15 SOMSEN_RANCH 2072.640 0.29972
20 1991-03-15 WILDHORSE_DIVIDE 1978.152 0.35052
21 1991-03-15 WILLOW_CREEK 2462.784 0.60706
22 1991-10-25 COTTONWOOD_CREEK 2337.816 0.01270
23 1991-10-25 EMIGRANT_SUMMIT 2252.472 0.01016
24 1991-10-25 PHILLIPS_BENCH 2499.360 0.02286
26 1991-10-25 SALT_RIVER_SUMMIT 2328.672 0.01016
27 1991-10-25 SEDGWICK_PEAK 2392.680 0.00254
29 1991-10-25 SLUG_CREEK_DIVIDE 2202.180 0.00762
30 1991-10-25 SOMSEN_RANCH 2072.640 0.00000
32 1991-10-25 WILLOW_CREEK 2462.784 0.02032
请您参考如下方法:
您可以试试这个,将数据帧拆分为非零和零,然后按最高 elev_exact 对零数据帧进行排序,并将 drop_duplicates
与日期列的子集一起使用。最后,使用 pd.concat
将数据帧重新连接在一起并排序:
df_nonzeroes = df[df['swe'].ne(0)]
df_zeroes = df[df['swe'].eq(0)].sort_values('elev_exact', ascending=False).drop_duplicates(subset=['date'])
df_out = pd.concat([df_nonzeroes, df_zeroes]).sort_index()
print(df_out)
输出:
date name elev_exact swe
0 1990-10-30 COTTONWOOD_CREEK 2337.816 0.01524
2 1990-10-30 PHILLIPS_BENCH 2499.360 0.05334
5 1990-10-30 SEDGWICK_PEAK 2392.680 0.00000
10 1990-10-30 WILLOW_CREEK 2462.784 0.01778
11 1991-03-15 COTTONWOOD_CREEK 2337.816 0.41910
12 1991-03-15 EMIGRANT_SUMMIT 2252.472 0.42418
13 1991-03-15 PHILLIPS_BENCH 2499.360 0.52832
14 1991-03-15 PINE_CREEK_PASS 2048.256 0.32258
15 1991-03-15 SALT_RIVER_SUMMIT 2328.672 0.23876
16 1991-03-15 SEDGWICK_PEAK 2392.680 0.39878
17 1991-03-15 SHEEP_MTN 2026.920 0.31242
18 1991-03-15 SLUG_CREEK_DIVIDE 2202.180 0.29464
19 1991-03-15 SOMSEN_RANCH 2072.640 0.29972
20 1991-03-15 WILDHORSE_DIVIDE 1978.152 0.35052
21 1991-03-15 WILLOW_CREEK 2462.784 0.60706
22 1991-10-25 COTTONWOOD_CREEK 2337.816 0.01270
23 1991-10-25 EMIGRANT_SUMMIT 2252.472 0.01016
24 1991-10-25 PHILLIPS_BENCH 2499.360 0.02286
25 1991-10-25 PINE_CREEK_PASS 2048.256 0.00508
26 1991-10-25 SALT_RIVER_SUMMIT 2328.672 0.01016
27 1991-10-25 SEDGWICK_PEAK 2392.680 0.00254
29 1991-10-25 SLUG_CREEK_DIVIDE 2202.180 0.00762
30 1991-10-25 SOMSEN_RANCH 2072.640 0.00000
31 1991-10-25 WILDHORSE_DIVIDE 1978.152 0.00508
32 1991-10-25 WILLOW_CREEK 2462.784 0.02032
声明
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。